7-2: MULTIPLICATION PROPERTIES OF EXPONENTS

Lesson Objectives:

- Multiply powers
- Work with scientific notation

PROPERTY: MULTIPLYING POWERS WITH THE SAME BASE

For every nonzero number a and integers m and n,

$$Q_{\mathbf{m}} \cdot Q_{\mathbf{n}} = Q_{\mathbf{m}+\mathbf{n}}$$

$$\frac{\chi^{2} \cdot \chi^{5}}{\chi \cdot \chi \cdot \chi \cdot \chi \cdot \chi \cdot \chi \cdot \chi}$$

EXAMPLE 1: MULTIPLYING POWERS

Simplify each expression.

2.
$$5^{-2} \cdot 5^{2}$$

5.
$$3^8 \cdot 3^5$$

6.
$$6^{-7} \cdot 6^9$$

7.
$$(-2)^3 \cdot (-2)^{-5}$$

$$\frac{(-2)^{-2}}{1} = \frac{1}{1}$$

8.
$$2^8 \cdot 2^{-9} \cdot 2^3$$

When variable factors have more than one base, be careful to combine only the powers with the same base.

EXAMPLE 2: MULTIPLYING POWERS IN AN ALGEBRAIC EXPRESSION

Simplify each expression.

9.
$$(3d^{-4})(5d^8)$$

$$(3.5)(J^{-4}\cdot J^{8})$$

10.
$$(-8m^4)(4m^8)$$

11.
$$n^{-6} \cdot n^{-9}$$

12.
$$a^3 \cdot a^4$$

13.
$$(3p^{-15})(6p^{11})$$

$$(3.6)(p^{-15} \cdot p^{11})$$

$$18'p^{-4}$$

$$18'p^{-4}$$

14.
$$p^7 \cdot q^5 \cdot p^6$$

$$(p^7 \cdot p^4) q^5$$

$$p^{13} q^5$$

14.
$$p^7 \cdot q^5 \cdot p^6$$
 15. $(-1.5a^5b^2)(6a)$ $(p^7 \cdot p^4)q^5$ $\frac{3}{1.5}$ $(-1.5 \cdot b)(a^5 \cdot a)b^2$ $-4a^4b^2$

16.
$$\frac{1}{b^7 \cdot b^5}$$

17.
$$(-2d^3e^3)(6d^4e^6)$$

 $(-3.6)(d^3.d^4)(e^3.e^6)$
 $(-12d^7e^9)$

18.
$$p^{-5} \cdot q^2 \cdot p^4$$

$$(p^{-5} \cdot p^4) q^2$$

$$p^{-1} q^2$$

$$q^2$$

$$19. \frac{1}{n^7 \cdot n^{-5}}$$

20.
$$(8d^4)(4d^7)$$
 $(8\cdot4)(3^4\cdot 3^7)$

Working With Scientific Notation

EXAMPLE 3: MULTIPLYING NUMBERS IN SCIENTIFIC NOTATION

 $\frac{Q \times 10^{n}}{Z_{1 \leq a \leq 10}}$

Simplify each expression. Write each answer in proper scientific notation.

21.
$$(7 \times 10^{2})(4 \times 10^{5})$$

 $(7.4) \times (10^{2} \cdot 10^{5})$
 $2.8 \times 10^{7+1}$

22.
$$(7 \times 10^{7})(5 \times 10^{-5})$$

 $(7.5) \times (10^{7} \cdot 10^{-5})$
35 × 10 2+1

23.
$$(3 \times 10^{8})(3 \times 10^{4})$$

$$(3 \cdot 3) \times (10^{8} \cdot 10^{4})$$

$$\cancel{q} \times 10^{12}$$

23.
$$(3 \times 10^{8})(3 \times 10^{4})$$
 24. $(9.5 \times 10^{-4})(3 \times 10^{-5})$
 $(3 \cdot 3) \times (10^{8} \cdot 10^{4})$ $(9.5 \cdot 3) \times (10^{-4} \cdot 10^{-5})$
 $(9.5 \cdot 3) \times (10^{-4} \cdot 10^{-5})$

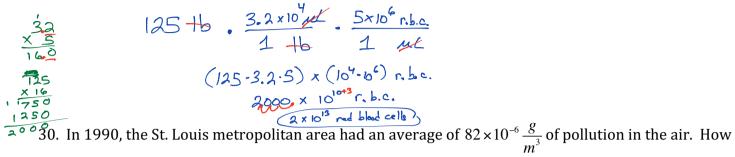
25.
$$(5 \times 10^7)(4 \times 10^3)$$

26.
$$(6 \times 10^{-6})(5.2 \times 10^{4})$$
 27. $(4 \times 10^{6})(9 \times 10^{8})$ 28. $(6.1 \times 10^{9})(8 \times 10^{14})$

27.
$$(4 \times 10^6)(9 \times 10^8)$$

28.
$$(6.1 \times 10^9)(8 \times 10^{14})$$

$$\frac{36 \times 10^{15}}{3.6 \times 10^{15}}$$


$$\frac{48.8 \times 10^{24}}{4.88 \times 10^{24}}$$

$$(4.4) \times (10^{6} \cdot 10^{8})$$

$$(6.1.8) \times (10^{9} \cdot 10^{14})$$

EXAMPLE 4: REAL-WORLD PROBLEM SOLVING

29. A human body contains about $3.2 \times 10^4 \mu L$ (microliters) of blood for each pound of body weight. Each microliter of blood contains about 5×10^6 red blood cells. Find the approximate number of red blood cells in the body of a 125-pound person.

many grams of pollutants where there in $2 \times 10^3 m^3$ of air?

31. Light travels approximately 5.87×10^{12} miles in one year. This distance is called a light-year. Suppose a star is 2×10^4 light-years away. How many miles away is that star?

32. The weight of 1 m³ of air is approximately 1.3×10^3 grams. Suppose that the volume of air inside of a building is 3×10^6 m³. How much does the air inside the building weigh?

33. Light travels 1.18×10^{10} inches in 1 second. How far will light travel in 1 nanosecond or 1×10^{-9} seconds?

$$1.18 \times 10^{10} \text{ in}$$
, 1×10^{9} See 1 nanosec $1.18 \times 10^{10} \cdot 10^{-9}$ it /nano $1.18 \times 10^{10} \cdot 10^{-9}$ it /nano

Simplify each expression.

1.
$$10^{-6} \cdot 10^5 \cdot 10^1$$

2.
$$(1.025)^2(1.025)^{-2}$$
 3. $5t^{-2} \cdot 2t^{-5}$

3.
$$5t^{-2} \cdot 2t^{-5}$$

4.
$$(-2.4n^4)(2n^{-1})$$

5.
$$(15a^3)(-3a)$$

6.
$$(4c^4)(ac^3)(3a^5c)$$

6.
$$(4c^4)(ac^3)(3a^5c)$$
 7. $-m^2 \cdot 4r^3 \cdot 12r^{-4} \cdot 5m$

8.
$$(4 \times 10^6)(2 \times 10^{-3})$$

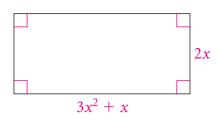
8.
$$(4 \times 10^6)(2 \times 10^{-3})$$
 9. $(5 \times 10^7)(3 \times 10^{14})$

10. Earth's crust contains approximately 120 trillion metric tons of gold. One metric ton of gold is worth about \$64 million. What is the approximate value of the gold in the Earth's crust?

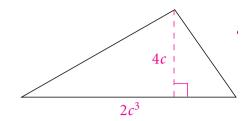
11. Light travels through space at a constant speed of about 3 X 10⁵ km/s. Sunlight reflecting from the moon takes about 1.28×10^{0} s to reach Earth. Find the distance from the moon to Earth.

Complete each equation.

$$2^{?} \cdot 2^{4} = 2^{-1}$$


$$c^{?} \bullet c^{-5} = c^6$$

$$x^3y^? \bullet x^? = y^2$$


12.

Find the area of each figure.

15.
$$A_{rectangle} = lw$$

16.
$$A_{triangle} = \frac{1}{2}bh$$

Correct each error.

$$4a^2 \cdot 3a^5 = (4+3)a^2 + 5$$

= $7a^7$

$$3^4 \cdot 2^2 = 6^4 + 2$$

Simplify.

$$19. \ \frac{5}{c \cdot c^{-4}}$$

20.
$$2a^2(3a+5)$$

21.
$$8m^3(m^2+7)$$

22.
$$-4x^3(2x^2-9x)$$

23.
$$3^x \cdot 3^{2-x} \cdot 3^2$$

24.
$$2^n \cdot 2^{n+2} \cdot 2$$

25.
$$(a+b)^2(a+b)^{-1}$$

26.
$$5^{x+1} \cdot 5^{1-x}$$